1 2	SECTION 7-17, SANITARY SEWERS April 5, 2004
3	7-17.3(2)B Exfiltration Test
4	In the third paragraph, "Maximum leakage (in gallons per hour)" = 0.28 x $\frac{\sqrt{H}}{\sqrt{6}}$ x D x $\frac{L}{\sqrt{6}}$
5	$\sqrt{6}$ 100 .
6	7-17.3(2)C Infiltration Test
7	In the second paragraph, "Maximum leakage (in gallons per hour)" = 0.16 x $\frac{\sqrt{H}}{\sqrt{2}}$ x D x $\frac{L}{\sqrt{2}}$
8	$\sqrt{2}$ 100 .
9	
10	7-17.3(2)E Low Pressure Air Test for Sanitary Sewers Constructed of Air-
11	Permeable Materials
12	In the seventh paragraph, the statement "If $C_T - 1$, then time = K_T " is revised to "If $C_T \le 1$
13	then time = K_T ."
14	
15	In the seventh paragraph, the statement "If $C_T \cdot 1.75$, then time = $K_T/1.75$ " is revised to "If C_T
16	\geq 1.75, then time = $K_T/1.75$."